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Abstract. Recent developments in the study of high-temperature plasmas in clusters of galaxies
are reviewed. The Compton scattering of the permeating 2.7 K cosmic microwave background
photons by high-temperature electrons of energy∼10 keV produces a distortion in the Planck
distribution of the 2.7 K cosmic microwave background photons. This effect, which has
been termed the Sunyaev–Zel’dovich effect, has been studied extensively in recent years both
theoretically and observationally. We will give a review of the study on this subject.

1. Introduction

The scope of the Oji International Seminar on the ‘Quest for New Physical Phases under
Extreme Conditions’, to which this Special Issue is devoted, is very broad, although many
of the papers presented at the Seminar deal with condensed matter physics in one way or
another. In the present paper we wish to discuss a different aspect of the research in this
field: we wish to discuss the interaction of very-low-temperature (2.7 K) photons with very-
high-temperature (∼10 keV) electrons. This interesting encounter is realized in clusters of
galaxies which contain about 100 galaxies and very hot (∼10 keV), tenuous (∼10−3 cm−3)
plasmas [1].

The Compton scattering of the permeating 2.7 K cosmic microwave background photons
by the high-temperature electrons of energy∼10 keV produces a distortion in the Planck
distribution of the 2.7 K cosmic microwave background photons. This effect, which has
been termed the Sunyaev–Zel’dovich effect, has been studied extensively in recent years
both theoretically and observationally.

In section 2 we will give a historical account of the Sunyaev–Zel’dovich effect. From
section 3 onwards we will review the recent theoretical work on the relativistic corrections
to the Sunyaev–Zel’dovich effect for clusters of galaxies.

2. The Sunyaev–Zel’dovich effect

Sunyaev and Zel’dovich [2–4] noted that the Compton scattering of the permeating
2.7 K cosmic microwave background photons by the high-temperature electrons of energy
∼10 keV in clusters of galaxies would cause a distortion in the Planck distribution of the
2.7 K photons. This effect has been confirmed and established by observation [5–16]. This
effect makes possible the measurement of the Hubble constant for the expansion of the
universe [5–16].
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Since the electrons in clusters of galaxies have rather high energy, of order 10 keV, a
great need for a relativistic correction to the Sunyaev–Zel’dovich effect has arisen in recent
years [17–21]. With regard to this point, Challinor and Lasenby [20] laid down a general
foundation for the calculation of the relativistic corrections to the Sunyaev–Zel’dovich effect.
The present authors [21] subsequently extended the work of Challinor and Lasenby. We
furthermore carried out a direct numerical integration of the Boltzmann equation, thereby
accurately examining the convergence of the power series expansion initiated by Challinor
and Lasenby.

The Sunyaev–Zel’dovich effect is essentially a problem in the kinetic theory of gases.
Since the elementary interaction is the well-known Compton scattering, the main problem
in this research is that of how to calculate the higher-order terms. Fortunately, this can
be done without too much difficulty. The results have very important consequences for
astrophysics and cosmology.

3. The generalized Kompaneets equation

In this section we will extend the Kompaneets equation for the photon distribution function,
taking into account the Compton scattering by electrons [22, 23], to the relativistic
regime. We will formulate the kinetic equation for the photon distribution function using a
relativistically covariant formalism [24, 25]. As a reference system, we choose the system
which is fixed to the centre of mass of the cluster of galaxies. This choice of the reference
system allows us to carry out all of the calculations in the most straightforward way. We
will use the invariant amplitude for the Compton scattering as given by Berestetskii, Lifshitz
and Pitaevskii [24] and by Buchler and Yueh [25].

The time evolution of the photon distribution functionn(ω) is written as

∂n(ω)

∂t
= −2

∫
d3p

(2π)3
d3p′ d3k′ W

{
n(ω)[1+ n(ω′)]f (E)− n(ω′)[1+ n(ω)]f (E′)

}
(3.1)

W = (e2/4π)2Xδ4(p + k − p′ − k′)
2ωω′EE′

(3.2)

X = −
(
κ

κ ′
+ κ

′

κ

)
+ 4m4

(
1

κ
+ 1

κ ′

)2

− 4m2

(
1

κ
+ 1

κ ′

)
(3.3)

κ = −2(pk) = −2ωE

(
1− |p|

E
cosα

)
(3.4)

κ ′ = 2(pk′) = 2ω′E
(

1− |p|
E

cosα′
)
. (3.5)

In the above,W is the transition probability corresponding to the Compton scattering. The
four-momenta of the initial electron and photon arep = (E,p) andk = (ω,k), respectively.
The four-momenta of the final electron and photon arep′ = (E′,p′) and k′ = (ω′,k′),
respectively. The anglesα andα′ are the angles betweenp andk, and betweenp andk′,
respectively. Throughout this paper, we use the natural ¯h = c = 1 units, unless otherwise
stated explicitly.

By ignoring the degeneracy effects, we have the relativistic Maxwellian distribution for
electrons with temperatureTe as follows:

f (E) = [e{(E−m)−(µ−m)}/kBTe + 1
]−1 ≈ e−{K−(µ−m)}/kBTe (3.6)
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whereK ≡ E −m is the kinetic energy of the initial electron, andµ−m is the non-relat-
ivistic chemical potential of the electron. We now introduce the quantities

x ≡ ω

kBTe
(3.7)

1x ≡ ω′ − ω
kBTe

. (3.8)

Substituting equations (3.6)–(3.8) into equation (3.1), we obtain

∂n(ω)

∂t
= −2

∫
d3p

(2π)3
d3p′ d3k′ Wf (E)

{
[1+ n(ω′)]n(ω)− [1+ n(ω)]n(ω′)e1x}. (3.9)

Equation (3.9) is our basic equation. One can numerically integrate this equation directly.
We will perform this integration in section 4.

Following Challinor and Lasenby [20], we expand equation (3.9) in powers of1x,
assuming that1x � 1. We obtain the Fokker–Planck expansion

∂n(ω)

∂t
= 2

[
∂n

∂x
+ n(1+ n)

]
I1+ 2

[
∂2n

∂x2
+ 2(1+ n)∂n

∂x
+ n(1+ n)

]
I2

+ 2

[
∂3n

∂x3
+ 3(1+ n)∂

2n

∂x2
+ 3(1+ n)∂n

∂x
+ n(1+ n)

]
I3

+ 2

[
∂4n

∂x4
+ 4(1+ n)∂

3n

∂x3
+ 6(1+ n)∂

2n

∂x2
+ 4(1+ n)∂n

∂x
+ n(1+ n)

]
I4

+ · · · (3.10)

where

Ik ≡ 1

k!

∫
d3p

(2π)3
d3p′ d3k′ Wf (E)(1x)k. (3.11)

Analytic integration of equation (3.11) is not possible except for by doing power series
expansions of the integrand. Technically speaking, there are several choices for the
expansion parameter of the integrand of equation (3.11). One could choose, for example,
p/m, K/m ≡ E/m− 1 andv ≡ p/E. It is important to note that the analytic expressions
for Ik obtained after the integration do not depend on the choice of the expansion parameter.
It is also extremely important to note that the expansions in terms of these variables are
asymptotic expansionsin Ik. Therefore, not only is the convergence very slow but also the
accuracy of the analytic expressions has to be carefully examined for the parameter region
considered. This is one of our main subjects in the present paper.

Challinor and Lasenby [20] carried out a calculation up to O(θ3
e ) terms, where

θe = kBTe/mc2, Te andm being the electron temperature and the electron mass, respectively.
We will carry out a calculation up to O(θ5

e ) terms in the present paper. The calculation ofIk
has been performed with a symbolic manipulation computer algebra packageMathematica.
We obtain

I1 = 1

2
σT Neθex

{
4− x + θe

(
10− 47

2
x + 21

5
x2

)
+ θ2

e

(
15

2
− 1023

8
x + 567

5
x2− 147

10
x3

)
+ θ3

e

(
−15

2
− 2505

8
x + 9891

10
x2− 9551

20
x3+ 1616

35
x4

)
+ θ4

e

(
135

32
− 30 375

128
x + 177 849

40
x2− 472 349

80
x3+ 63 456

35
x4− 940

7
x5

)}
(3.12)
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I2 = 1

2
σT Neθex

2

{
1+ θe

(
47

2
− 63

5
x + 7

10
x2

)
+ θ2

e

(
1023

8
− 1302

5
x + 161

2
x2− 22

5
x3

)
+ θ3

e

(
2505

8
− 10 647

5
x + 38 057

20
x2− 2829

7
x3+ 682

35
x4

)
+ θ4

e

(
30 375

128
− 187 173

20
x + 17 01 803

80
x2− 44 769

4
x3

+ 61 512

35
x4− 510

7
x5

)}
(3.13)

I3 = 1

2
σT Neθex

3

{
θe

(
42

5
− 7

5
x

)
+ θ2

e

(
868

5
− 658

5
x + 88

5
x2− 11

30
x3

)
+ θ3

e

(
7098

5
− 14 253

5
x + 8084

7
x2− 3503

28
x3+ 64

21
x4

)
+ θ4

e

(
62 391

10
− 614 727

20
x + 28 193x2− 123 083

16
x3

+ 14 404

21
x4− 344

21
x5

)}
(3.14)

I4 = 1

2
σT Neθex

4

{
7

10
θe + θ2

e

(
329

5
− 22x + 11

10
x2

)
+ θ3

e

(
14 253

10
− 9297

7
x + 7781

28
x2− 320

21
x3+ 16

105
x4

)
+ θ4

e

(
614 727

40
− 124 389

4
x + 239 393

16
x2− 7010

3
x3

+ 12 676

105
x4− 11

7
x5

)}
(3.15)

I5 = 1

2
σT Neθex

5

{
θ2
e

(
44

5
− 11

10
x

)
+ θ3

e

(
18 594

35
− 36 177

140
x + 192

7
x2− 64

105
x3

)
+ θ4

e

(
124 389

10
− 10 67 109

80
x + 3696x2− 5032

15
x3+ 66

7
x4− 11

210
x5

)}
(3.16)

I6 = 1

2
σT Neθex

6

{
11

30
θ2
e + θ3

e

(
12 059

140
− 64

3
x + 32

35
x2

)
+ θ4

e

(
355 703

80
− 8284

3
x + 6688

15
x2− 22x3+ 11

42
x4

)}
(3.17)

I7 = 1

2
σT Neθex

7

{
θ3
e

(
128

21
− 64

105
x

)
+ θ4

e

(
16 568

21
− 30 064

105
x + 176

7
x2− 11

21
x3

)}
(3.18)

I8 = 1

2
σT Neθex

8

{
16

105
θ3
e + θ4

e

(
7516

105
− 99

7
x + 11

21
x2

)}
(3.19)

I9 = 1

2
σT Neθex

9

{
θ4
e

(
22

7
− 11

42
x

)}
(3.20)
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I10 = 1

2
σT Neθex

10

{
11

210
θ4
e

}
(3.21)

whereσT is the Thomson scattering cross section andNe is the electron number density.
The expansion parameterθe is defined by

θe ≡ kBTe

mc2
. (3.22)

In deriving equations (3.12)–(3.21), we have ignored O(θ6
e ) contributions. Using equations

(3.12)–(3.21), one can show that the photon number is conserved order by order in terms
of the expansion parameterθe.

We now apply the present result for the generalized Kompaneets equation to the
Sunyaev–Zel’dovich effect for clusters of galaxies. We assume the initial photon distribution
of the CMB radiation to be Planckian with temperatureT0:

n0(X) = 1

eX − 1
(3.23)

where

X ≡ ω

kBT0
. (3.24)

Substituting equation (3.23) and equations (3.12)–(3.21) into equation (3.10), and assuming
T0/Te � 1, one obtains the following expression for the fractional distortion of the photon
spectrum:

1n(X)

n0(X)
= yθeXeX

eX − 1

[
Y0+ θeY1+ θ2

e Y2+ θ3
e Y3+ θ4

e Y4
]

(3.25)

Y0 = −4+ X̃ (3.26)

Y1 = −10+ 47

2
X̃ − 42

5
X̃2+ 7

10
X̃3+ S̃2

(
−21

5
+ 7

5
X̃

)
(3.27)

Y2 = −15

2
+ 1023

8
X̃ − 868

5
X̃2+ 329

5
X̃3− 44

5
X̃4+ 11

30
X̃5

+ S̃2

(
−434

5
+ 658

5
X̃ − 242

5
X̃2+ 143

30
X̃3

)
+ S̃4

(
−44

5
+ 187

60
X̃

)
(3.28)

Y3 = 15

2
+ 2505

8
X̃ − 7098

5
X̃2+ 14 253

10
X̃3− 18 594

35
X̃4+ 12 059

140
X̃5− 128

21
X̃6+ 16

105
X̃7

+ S̃2

(
−7098

10
+ 14 253

5
X̃ − 102 267

35
X̃2+ 156 767

140
X̃3

− 1216

7
X̃4+ 64

7
X̃5

)
+ S̃4

(
−18 594

35
+ 205 003

280
X̃ − 1920

7
X̃2+ 1024

35
X̃3

)
+ S̃6

(
−544

21
+ 992

105
X̃

)
(3.29)

Y4 = −135

32
+ 30 375

128
X̃ − 62 391

10
X̃2+ 614 727

40
X̃3− 124 389

10
X̃4

+ 355 703

80
X̃5− 16 568

21
X̃6+ 7516

105
X̃7− 22

7
X̃8+ 11

210
X̃9
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+ S̃2

(
−62 391

20
+ 614 727

20
X̃ − 1368 279

20
X̃2+ 4624 139

80
X̃3

− 157 396

7
X̃4+ 30 064

7
X̃5− 2717

7
X̃6+ 2761

210
X̃7

)
+ S̃4

(
−124 389

10
+ 6046 951

160
X̃ − 248 520

7
X̃2+ 481 024

35
X̃3

− 15 972

7
X̃4+ 18 689

140
X̃5

)
+ S̃6

(
−70 414

21
+ 465 992

105
X̃ − 11 792

7
X̃2+ 19 778

105
X̃3

)
+ S̃8

(
−682

7
+ 7601

210
X̃

)
(3.30)

where

y ≡ σT
∫

d` Ne (3.31)

X̃ ≡ Xcoth

(
X

2

)
(3.32)

S̃ ≡ X

sinh(X/2)
. (3.33)

Note that the analytic forms ofY0, Y1 and Y2 in equations (3.26)–(3.28) agree with the
results obtained by Challinor and Lasenby [20]. Finally we define the distortion of the
spectral intensity as follows:

1I = X3

eX − 1

1n(X)

n0(X)
. (3.34)

4. Analysis of the convergence of the power series

We now carefully study the convergence of the analytic expressions of equations (3.25) and
(3.34). In order to perform this task, first of all, we integrate equation (3.9) directly by
numerical integration. We confirm that the total photon number is conserved with excellent
accuracy (<10−9) in the numerical integration. We are now ready to compare the present
numerical results with those obtained from the analytic expressions of equations (3.25) and
(3.34) for variousX–Te regions and to investigate the accuracy of the analytic expressions.

4.1. The Rayleigh–Jeans region

In the Rayleigh–Jeans limit whereX→ 0, equation (3.25) is further simplified:

1n(X)

n0(X)
−→ −2yθe

[
1− 17

10
θe + 123

40
θ2
e −

1989

280
θ3
e +

14 403

640
θ4
e

]
. (4.1)

As is seen explicitly from equation (4.1), the convergence of the power expansion is very
fast in theX→ 0 limit. Furthermore, we show in figure 1 theTe-dependence of the spectral
intensity distortion equation (3.34) forX = 1. As is expected, the convergence is extremely
fast for kBTe 6 50 keV. Relativistic corrections from higher-than-O(θ3

e ) terms are almost
negligible in this region. So far the Sunyaev–Zel’dovich effects have only been measured
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Figure 1. The spectral intensity distortion1I/y as a function ofkBTe for X = 1. The solid
curve shows the result of the numerical integration. The dotted curve shows the contribution of
the first two terms in equation (3.25). The long–short dashed curve shows the contribution of
the first three terms. The chain curve shows the contribution from the first four terms. (These
latter two curves cannot be distinguished in this figure.) Finally the dashed curve shows the
contribution from all of the terms in equation (3.25).

in the Rayleigh–Jeans region. Therefore one can reliably apply the analytic expressions of
equations (3.25), (3.34) and (4.1) to the analysis of the observed data.

In passing, we remark that the form of equation (4.1) is meaningful only in an idealized
situation. In order for the higher-order terms to have a physical meaning, it is necessary
that the electron distribution is rigorously given by the relativistic Maxwellian distribution
equation (3.6) with a precisely determined temperatureTe. In a real observation, the electron
temperatureTe has a significant amount of observational error. This thereby restricts the
precision of formula (4.1).

4.2. TheX ≈ 4 region

As one can see from equation (3.26), the leading-order contributionY0 vanishes at
X̃ = 4≈ X. Therefore, higher-order corrections become more important in this region. In
figure 2 we have plotted theTe-dependence of the fractional spectral distortion atX = 4.
It is seen that the chain line is closest to the exact result. It should be emphasized here
that the chain line is the result including only the first four terms in equation (3.25). The
dashed curve, which includes all of the terms in equation (3.25), shows a poorer agreement
with the exact result. This means that the power series expansion inθe in this region
is not convergent but asymptotic for largeTe. We conclude that the analytic expression
which includes up to O(θ5

e ) terms is reliable forkBTe 6 15 keV in theX ≈ 4 region. We
recommend that the analytic expression which includes up toθ3

e Y3 terms (the chain curve)
be used for the analysis of the observational data for 15 keV< kBTe < 30 keV,X ≈ 4.
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Figure 2. As figure 1, but forX = 4.

Figure 3. As figure 1, but forX = 8.

4.3. The Wien region

We now study the Wien region whereX > 4. As was mentioned earlier, the Sunyaev–
Zel’dovich effects have been so far studied observationally only in theX � 1 region.
However, the effects will be observed in the Wien region in the future. For illustrative
purposes, we show theTe-dependence of the spectral intensity distortion of equation (3.34)



High-temperature plasmas in clusters of galaxies 11281

Figure 4. The spectral intensity distortion1I/y as a function ofX for kBTe = 15 keV. See
figure 1 for the key to the curves.

Figure 5. As figure 4, but forkBTe = 20 keV.

atX = 8 in figure 3. The convergence is very slow. All of the curves are diverging quickly
from the solid curve (the exact result) forkBTe > 30 keV. We conclude that the analytic
expression including up to O(θ5

e ) terms is reliable forkBTe 6 15 keV. In figures 4 and 5
we show1I/y for kBTe = 15 keV andkBTe = 20 keV, respectively. We confirm the good
accuracy of the analytic expression forkBTe = 15 keV.
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Figure 6. The crossover frequencyX0 as a function ofkBTe. The solid curve shows the result
of the numerical integration. The dotted curve shows the contribution of the first two terms in
equation (3.25). The long–short dashed curve shows the contribution of the first three terms.
The chain curve shows the contribution from the first four terms. Finally, the dashed curve
shows the contribution from all of the terms in equation (3.25).

4.4. The crossover frequency

Finally we study the crossover frequencyX0, at which the spectral intensity distortion
vanishes. It is known that the accurate determination of theX0-values is extremely important
for the study of the Sunyaev–Zel’dovich effects [18]. In figure 6, we have plotted theTe-
dependence ofX0 for kBTe 6 50 keV calculated from the analytic expressions and also
by numerical integration (solid curve). The numerical result is well approximated as a
linear function ofθe for kBTe < 20 keV. It starts to deviate from the linear form for
kBTe > 20 keV. We have fitted the numerical result as follows:

X0 ≈ 3.830(1+ 1.1674θe − 0.8533θ2
e ). (4.2)

The errors of this fitting function are less than 1× 10−3 for 06 kBTe 6 50 keV.
Rephaeli and Yankovitch [18] discuss the consequence of the relativistic shift of the

crossover frequency for the value of the peculiar velocity of the cluster measured with the
use of the kinematic Sunyaev–Zel’dovich effect. For a cluster withkBTe = 13.8 keV, one
obtains an error of 20 km s−1 in the value of the peculiar velocity deduced for the SUZIE
experiment corresponding to an accuracy of 1× 10−3 in equation (4.2), by interpolating
Rephaeli and Yankovitch’s estimation. Therefore, one concludes that the current level
of the observational accuracy has not reached the accuracy provided by the theoretical
formula (4.2).

Another implication of the accuracy, 1× 10−3, of equation (4.2) is the following. Let
us consider a cluster with the plasma temperaturekBTe = 10 keV making a proper motion
with the velocityv = 1000 km s−1. Then the effect of this proper motion on the Sunyaev–
Zel’dovich effect will be of order(v/c)2/(kBTe/mc2) = 5× 10−4. Thus the kinematic
effect of the proper motion of the cluster will not exceed the accuracy of equation (4.2).
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5. Concluding remarks

We have reviewed the recent progress in the study of the relativistic correction to the
Sunyaev–Zel’dovich effect for clusters of galaxies in detail. This is a very good example of
a subject in the field of the kinetic theory of gases. (As we read from the original paper by
Kompaneets [22], L D Landau was interested in the problem of the Compton scattering of
photons by electrons.) It deals with a system of very simple elementary particles (photons
and electrons) and a very simple interaction between them (Compton scattering). Yet it
produces very rich physical effects known as the Sunyaev–Zel’dovich effect. It is extremely
interesting to note that this situation is realized in clusters of galaxies and that the effect
has been confirmed and established by observation. The Sunyaev–Zel’dovich effect also
enables one to measure the Hubble constant for the cosmic expansion. This is again a
good example of bridging from microscopic physics (Compton scattering of photons by
electrons) to macroscopic physics (astrophysics and cosmology). In order to achieve this
goal, one makes full use of the kinetic theory of gases. We hope that we have introduced
to condensed matter physicists how the universe provides us with fascinating new physical
phases under extreme conditions.
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